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The pipe conveying incompressible fluid is modelled using linear beam
t y.The stability of the system is analysed using a causal approach which

is able to distinguish between absolute and convective instabilities.* Closed-
* form expressions for the stability boundaries of the beam theory model are

derived analyticoaly. The dissipation-free pipe is absolutely unstable if the
ratio of the mass per unit length of the pipe to that of the contained fluid
is greater than one-eighth, otherwise It is convectively unstable at low
excitation freuenie and stable at high freq~uencies. The pipe is found to .-

* be absolutely unstable when damping is included.* Som numerical results are
presen-ted. for a steel pipe and a rubber pipe, both of which containwa>~
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LIST OF S'LNBLS

~r( z, t) instantaneous value of beau displacement

F~r( a, t instantaneous value of beau excitation

V(Zut) displacement amplitude

- PCZ't) excitation amplitude

W( a(, 0) Laplace transform of V(z,t)

V~,E,)Fourier transform of W( z,6))

* cN~ao) beam dispersion relation

*t time

a, n aial arid circumferential wavenmbers

f frequency in Rx

radian frequency (-21rf)-

a In(w3-a denotes the line of Laplace integration

p1 1 c1 ,U1  density, sound velocity and axial flow velocity of
interior fluid

M1  Mach rnmer of fluid, K1-Uj/C 1

a, h~p, radius, thickness and density of shell

E Young's modulus of the shell

* V Poisson's ratio of the shell

* hysteretic loss factor of the shell

K mass per unit length of fluid, H-wra2p1

m mass per unit length of beam, m-2wrahps

* I area moment of inertia of bean, I-Wha 3

* (as a superscript) denotes complex conjugate .
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Wxach theoretical work [1-91 has been donw on the vibration and sound
radiation of fbAi-oafd structures, such as plates and shells, excited by
t- m-hzmonic mechanical forces or acoustic point sources. These, and other,
authors deal with wave propagation in, and vibr&tlon response of, systms in
wiLch the fluid is assumed to be stationary. Practical pipework systm,
however, usually convey fluid whose motion nay significantly dhange the
dymmic characteristics of the system. In particular, the interchange of
energy between the moving fluid and the pipe my result in an instability
which causes enressive vibration and sound radiation.

nw stability analysis of system conveying fluid usually proceeds via
the system dispersion relation. Coamlex values of frequency cozzesponding
to real values of wvenmber axe obtained and the sign of the ima y part
of thes frequencies indicates whether or not the system is unstable. -

D* ll [10] has used this approach to investigate the flutter behaviour of
infinite shells. Hs concl es that the shell theory used was inadequate for -.

the n-i harmonic, but for each nml c--merential harmonic a flutter
instability occurs above a critical flow speed, the lowest such speed being
the one associated with the n-2 harmonic. The effect of damping in the shell
was not considered.

Mwichh r (11] describes an alter ative approach to stability analyses
whic was used by Briggs (12] in connection with ber-plasma Interactions.
This approach demands that the system is cmusal, that is, it cannot respond
until an excitation is applied. At a sufficiently long tims after the
excitation has been applied three types of behaviour may be Identified.*-

_* Firstly, there Is the stable configuration in which the response is finite
evrwhr in space-tim. Secondly, there is the convectively unstable
configuration in which the response increases exponentially with distance from
the excitation. Thirdly there i the absolutely unstable configuration in
which the response at all points in the system increases exponentially with .h..-

time. Brasier-Smith & Scott (13] hav applied this causal apProa h to the
problem of uniform incompressible flow over an infinite unded elastic
plate. The excitation was assumed to be a tim-harmonic force switched on at
t-O. They found that at low excitation frequencies there are convec ive
instabilities, and that above a critical flow velocity there are also absolute
instabilities. Atkins [14] has confirmed the main results of this paper and
has also demonstrated that plate damping my destabilize soe m free-waves at
all flow speeds and does not remove the absolute instability which occurs
above the critical velocity.

in the present work the causal approach to stability determination is
applied to an infinite pipe with uniform a3al, fluid flow. The pipe tis
modelled as a bern conveying an incompressible fluid. The effects of pigs
dmping are included in the model. The stability characteristics of the be. .
theory model are deduced analytically, whereas a numrical approach would be ... .

* necessary to determine the stability characteristics of shell theory models.
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2. * za RY

The ranvere dsplcesnt r(z, t) of &pipe conveying an inviscid
* incomressible fluid is often assumed to satisfy the differential equation

of beam. theory (1.51, viz.,

Z04lye:& + 3EJ1 w/SZ, + 2jSw/*8t + KU)2r/t - r( Z,t) (2.1)

Wahere K is the mass per unit length of the fluid, U is the mass per unit
length of the pipe and I is the area mmnt of inertia Of the Pipe'

The causa solution for the dIsPlacmant may be Obtained by expressing it
* as the Laplace-Fourier transform

W(Z~t) (.1/4Vexp icz-iwt)dadb)

* where the dispersion relation, D a,#A*), is obtained from equation (2.*1) as

D~,.ain~ 4  ~2 2 +2JO)-(iau 2  (2.3)

3. 3B1TSML'IAL ANALYSIS OF HMx STABILITY ---

(a) General

* The symetrical nature of the dispersion relation, viz.,

D~a~w - D(-a -~ )(3.1)

means that it is necessary to consider only those values Of wi such that
MlEOW, the stability analysis with RSE(0aa ( being almost identical: the
root loci in the Colex a-plane obtained for those wi With Re(w],cO
are reflections in the imaginary a-axis of those obtained for Re~w] ,O.
'he analysis of beam stability is further simplified by the absence of

branch cuts in the comlex a-plane.

The first step in the stability analysis,* as described in the Appendix,
Is to search for coalescing poles of the dispersion relation which originate
In opposite half-planes. If such poles exist.* they indicate the presence of
absolute instabilities for both impulse and tim-harmonic switch-on
disturbances. Secondly, in the absence of coalescing poles the form of the
response to the time-harmonic, disturbance is determined, the response to the
Imp1ulse being bounded In both space and tim.



(b) Coalescing Poe

Coalescing pole ar present at those values of .and a. wich
satisfy the simultaneous equations

(3.2)

It is straigtfow.rd to solve these equations for the be to give the two
solutions t: o),

where for the first solution the positive sign.s am taken throughout, and
for the s on t negative tae tken oughou e

(lining two solutions of equations (3. *2) and (3.3) are of apposite sign
to those given above, and In particular have R*E&) 1 , c0 For case where
Bon/M, both of the solutions for Gp given by equation (3.4) are purely
real, and therefore represnent transient solutions, even if the zoot loci of

c~plez -pf la.ne

the coalescing poles originated In opposite halh-pes.
if, o ever, then the second solution for (apap) is such

that w~phas a positive Imaginary part, indicating that an absolute
insapoite is present if the root loci of the coalecing poles originated

In ppoitehalf-planes. The corresponding value of up has a positive
relpart and a negative imaginary part. The presence of an absolute

instability is determined as follows.

(i) At any real frequency or , the four zoot loci for .uw a, where a
is large and positive, are found from the various combinations of

a E(~ (K~Ma)/4Z- /=/(*l* ) (.G)

Bance, each of the root loci originates In a separate quadrant of the
coWlex a-plane.

(ii:) In order to determine whether or not the coalescing poles originated
in the sae half-plane, it is convenient to solve the dispersion relation, C

..1- ..

•equation (3.2), for w, viz.,

2_V2)1/23/*U

and to consider whtere the root loci my cross the real and imoiniry a-exss.

(iii) If a root locus crosses the imaginary a-axis, a. a-ir say, then ~U
from equation (3.7)

wir[w11 i(KI(WIu)r 4wEJW 1  /(E4U) (3.8)

I.,.-. *



and because, by definition, on a. roo locus Iu(..] must be positive,
equation (360) shows that r must also be positive. Hence, no root lou
my cross the negative imaginary a-xis.

(1v) If a root locs crosses the real a-a.is, at Oe sY, then by
considering the real and imaginary parts of equation (3.*7)

2 (39)2 ;'vv j

(K +m)Es -0 <o (3.9)'

and
,. ,a 1 lm) ( 3.1.0 )

Since the analysis has been restricted to only those values of w with
positive real part, equation (3.10) show that s must also be positive.
Hence, no roo locus my cross the negative real a-axis. This result,
together with the result of paragralph (ILL) shows that the locus whichA
originates in the lower half-plane, with He [] 0, must remain in that
quadrant of the compIex a-plane, and in particular it my not coalesce
with any other loci. Thus, if the coalescing poles originate in the s am
half-plane, it must be the upper Mlf-plane.

(v) Suppose that the loci of the coalescing poles both originate in the upper
half-plane, then, because the Imaginary part of ap is negative, they must
both cros the (positive) real a-axis. Equations (3.9) and (3.10) show
that for a given real frequency ar, loc sy cross the real a-axis at

• (at mot) one point. By substituting this (real) value of a into
equation (3.7) it is clear that only one (positive) value of a is possible
for both loc at this point. Bence, coalescence occurs on the real *-axis
and a contradiction to the results of equation (3.5) has been obtained. '-

Thus the coalescing poles my not both originate in the upper haLf-plane.

Together, the results of paragraphs (iv) and (v) show that the loci
of the coalescing poles originate in opoeite ha-lf-planes, and therefore
indicate that the pipe is absolutely unstable if eaM/ ., and, as described
in the Appendix, the pipe response is dominated by the frequency up.

(c) Response to Time-hazronic Sitch-on

In the absence of an absolute instability, the form of the pipe response
aforcing excitation at a particular frequency w) may be determined. For *'"',

1WNWl there is no absolute instability present, and the behaviour of the '

pipe depends on the forcing frequency. It follows from equations (3.9) and
(3.*10) that a locus for .,w%+icu crosses the real a-ais only if

This is a ncssary, but not sufficient, condition for a convective
instability sinice the locus say subsequently return to the real a-axis,
In w(ich case the pole would represent a propagating wave.

By considering the dispersion relation, in the form given by equation
(3.7) for real values of a and w it is obvious that the branch

-10-



e(U)ma(EN 1 4(E(UHa)a 2-I 2 1 2 /NU (3.1.2)

is a mnotonic increasing function of a. in the regions of the real ai-axis
where it exisrts as a real function. Clearly, howver, the branch given by

is otandtheequation

wo-uc a)(3.*14)

WAY have 2, 3, or 4 real roots a, depending on the value of awo. Th
boundaries between these intervals on the -axis are deteruined by solving
the eqtion

where e(a) is given by equation (3.*13). The pipe behaviour may then be *'.

descibed. In each of three frequency regions, using arguments similar to
those used in section 3(b). The behaviour is as follows:

Flor

2 L/2(3~f (3.16)3
WOC 2/X IV OR (.)

the pige is convect ively unstable in the region as-O In this region two
waves whose phase propagates downstream from the excitation exist, oae of
which decays exponentially with distance, wilst the other grows exponenrtially

wihdistance. Inthe upstream region, siC, there are two free-waves which
propgat wihou deayonewhoe pasepropagates downstream and the other

upstream. However, the group velocity, &a/Oa, of both of these waves is
* negative, Indicating that In both cases the energy flow upstream free the

source of excitation *

For Wo3 U 2 (WI) 1/ 2 (lV(l-9W)) 1 / 2 (-VlQM-3/2
a 3Vl-mK (3.17) .. *.

**~U(WX 1/2(]V 3_" 1/2(3V _M-3/2

the pipe behaviour is stable and consists of four free-waves.* In the
upstream region, s(0 the phas of one wave propagates upstream from the point

* of excitation, whilst the phase of the other propagates downstream frE
Infinity. Again, in both cases, the group velocity Is negative and the
energ flow is upstream from the point of excitation. *in the region, z3-0, the .%*

9hase of both free-waves propagates downstream from the source.* The group
velocity of both of these waves is positive, and the energy flow of each
wave is downstream from the source of excitation unless

2 -1 1/2
wot~~~~~ NLS..)ENZ(*nl



when the group velocity Of on* Of the WaVOS IS negative, and the energ flow
associated with that wave is upstreem from infinity.

For

W zUq/ 2Ez)( (3 -~/) 4V( l-SK)' (3* iS

source, one of which is a free-wave wich propagates without decaying and
the other is evanescent and decays ezponentially with distance. In the
upstream region, &W, one free-wave propagates upstream without decaying.
the amplitude of the second wave in the ztO region decays exponentially with
distance from the excitation and to therefore stable.

(d) Effect Of Dming

A positive hysteretic loss factor, q~, may be introduced into the
Mtnimtical model by making Z coalez, viz.,

Ea'E 1-117), for 10

E-W 1171),for (i)-o

whom 4 i)I ml comared with unity. the SYMNatry of the disupersion

* relation, equation (3.*1), is preserved which wmn that it is again sufficient X-*
to consider only those values of w with Us(wi] 0.

* E3quations, (3.4) and (3.5) again give the position of coalescing poles
excpt that now, for small ,

w aw (14-iVVI)
pp (3.20)

a w(l+ivV2)
-p p

For the case 1BWW1, the addition of daming has altered the location
of the coalescing poles slightly, but not enough to stabilise the system
frun Its previously absolutely unstable state.

For the case Gm/IN, where there was no absolute instability, the .

addition of daming alters the position of the root loci slightly, and may
result in coalescing poles. In the absence of damping, both solutions for
the frequncy, given by equation (2.*4), at which poles coalesce were real and
thus reprsen ted transient solutions. Equation (3.20) shows that with daming 4..4

both of these solutions have a positive Imaginary pert, and my therefore *, , .

represent Absolute instabilities if the coalescing poles originated in
opposite half-paces. The behaviour of the root loci in the undmed case
show that at the lower frequency the colecec Is between loci which both

originate In the upper half of the a~e -plane, but at the higher
* frequency

-12-
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-U (WEI) (I+(I-SK))(3.21)

the caeeceis between one pole whose locus originates in the lowr half-
space and aim whose locus originates in the upr half-space. There is thus

* an absolute instability at the frequency 6ip given by equation (3.*21).
However, ncun n zoeua.gw uu.5~urum& *,-.~

-'S small,* this contribution to the displacement my not dominate the solution
until t become very large. For simall or moderate values of the tim t,
the response Will aperto be aroitly as was determined for the

-naxe case.

4. mLIMuMa Ij LT

(a) General

Fortran progrms have been written for calculating the complex roots,
a, of the dispersion relation given by equation (2.*3) for comlex values of
the frequency parmter wU'wr+ia. Thes progrms are written in double

*precision coulex arlittic, which is simulated [16] by the use of double
* precision real arrays of leading d~snsion two.* This was necessary because
*the prorinm were run on a PDIP-li omputer whose single precision aritimtic
* word length of 32 bits is inadequate for this type of problem.

teThe material and geomeitric constants, in SI units, which were used in
tecalculations for Figures 6-11 are as follows:

*Steel Pipes E-I9.5X10 1 0  v.-0.29 P-7700.0 a-l..0x10 2  h-0.05x10-2

Rubber Pipes R-3.23=iO 10  '-0.4 P-1l00.O a-l.0xIO- h-0.05x10-2

water t p-3.000.0 c-150. 0 U-10.0

Daming In the pipe wall was included in the calculations for Figures 10 and
11 by setting E, the Young's modulus, to the compglex value K( l-iI), where

* the numerical value of Y1, the hysteretic loss factor, was chosen as 0.*2.
This value, which is an order of magnitude higher than practical levels, helps .-

to clarify the effect of damping without significant change to the physical ".

interpretation.

(b) Demom Theory Results

Figures Ga and 6b show the real and Imaginary parts, respectively,
of the mwe.nie-frequency plot for the undmed atee pipe, obtained from
the dispersion relation for a beast, equation (2.*3). The branches labelled .

I and 2 are purely real, and branches 3 and 4 are complex conjugate zoots. C



+ In
The positive real branch, labelled 1. has a minliu va3e at appxImtely
0 *193 which indiaotes an infinite group velocity and also a possible
instability at this frquency. Clearly, because these branches of the
dispersion relation do not intersect, no poles my coalesce at real values
of the frequency.

Figure 7 shows a root locus stability plot for the four zoots (labelled
a, b, a and d) of the undamped steel pipe. All the loci labelled I correspond
to the frequency wr/ZwmO.04H. The loci labelled la and lb terminate on the
real a-axis and for a time-harsnic switch-on excitation at this frequency
therefore represent free-waves, whoe phase propagates upstream from the
excitation and downstream from infinity, respectively. The energy of both of r
these waves propagates upetrem from the excitation. The locus labeled lc -
crosses the real a-axis and terminate in the lower half-plane. This
represents a convectively unstable wave propagating downstrem from the
excitation. The locus labelled 14 terminates in the upper half-plane, and,
because there are no branch cuts in the Complex a-plane, my be identified
with an evanescent wave propagating downstrem from the excitation.

The l labelled 2 and 3 correspond to frequencies Or/2w-0.OS9u and
O/2v-o.128a, respectively, and represent responses similar to those at 0.04M.
The loci labelled 4 and S, corresponding to frequencies WU/2-0.161t and
wo/2w-0. 20Hz, however ohm very different behaviour. The locus labelled 4
terminates in the lower half-plane, and my be identif ied with a wave whose

asand group velocities both propagate downtream from infinity. The
anplitude of this wave decays exponentially with distance from the excitation
point, a-O, and, according to Welcher-s classification it must therefore be
described as stable. in fact the amplitude of this wave increases in the
direction of propagation, i.e. it appears to be a conveftively unstable wave
propagating downstream from infinity. The locus labelled 4c teInates on the
real ai-axi and repreets a free-wave whome phase propagates downstrea from
the excitation, but Whoe group velocity is negative. The loci 4b and 4C
therefore both represent waves whoe energy propagates towards the excitation
point. The locus labelled Sc terminates on the real a-axis and represents a
fr-ve which propagates downstream from the excitation.

The difference in the character of the response at frequencies below
0.* 1233 and that at frequencies above 0. 16ft, together with the form of the
response at 0. 168s, suggests that at s frequency between these values there
'my be a branch point in the cosplex .- plane, as a result of poles from
opposite half-spaces of the colex a-plane coalescing. The form of the root
loci shown in Figure 7, show that such a pair of coalescing poles mAst exist,
and hence that the pipe has an absolute instability which exists for both ther"1

impulse excitation and the tim-haonic switch-on excitation whatever the *" .

value of wo , the excitation frequency. Further nunerical work, not presented
here, reveals that the coalescing poles are located at

.. *
UP tM* 0.190.0

wp#/fl - 0.14+0.0DJ (4.2) .

which my also be obtained directly frm equations (3.4) and (3.5). The
co~onen of the pipe response due to the Integral around the brandh cut in
the oslex a-plane grow exponetially with tim, and at large tine the
respos is approximately at the frequency up and wevember ap, given by

-14-
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equations (4. 1) aM (4.2). The frequencY at %ftidi the absolute ntblt
4occurs, eqain(.2). does not coincide with the frequency, obtained fo

Figure, 6. at whJi the group velocity appears to be Infinite.-

Figures ft and lb sho the real and 1inutariy Parts, respectively, Of
the wooewime-feqemcy plot ftr the undmed rubber pipe, obtained fromt
the dispersion relation fog a bern, equation (2-*3). The branches labelled
I and 2 axe purely real, and branches 3 and 4 are Comlax conjugate toots.
At freqjUsnales lbetoee sL(pritly 1.*211a) and fg ( iG- -xiwkely
1*I.Ms), the nmber of real poeitive roots of the dispaesio relation changes
from ane to three.* At fEqunce below fL a pair of complex Cojgte

*roots exist. whidi coalesce at IfL At frqnclee between t L and fU
all fout toots are real.* At fg the two largest real roots coalesce, and
at higher feunciems this pair of roots are comlex conjugates.

Figure 9 stoms a rook locus stability plot for the four roots (labelled
a. b, a and d) of the undmed rubber pipe. Kll the loci labelled 1

corepnd to the frequency wr/2ffm. 7 SE1. The 'loci labelled lA and lb
terinteon the real a-axis and irepresent1 ftee-weven whose jhmme propagates

L* ty m from the excitation and domnstreent fuom Infinity, resecivly. "he
energy of both of these waves propagates upetzemmi from the exitation. The:~
locus labelled Ia aroues the real a-axis and tezminates in the lower half-

* plans, AIlst the locus labelled 14 termninates in the upper half-plums. "Mes
rpresent a ccng-atively unstable wave and an evanescent wve, reetivealy,

both propagating dommstrer from the exiltation. The loci labelled 2
cr rem nd to the frequency w,/2fftl. offs, and are sinilar to those at 0.* 75M3.

The loci labelled 2 In FigUre 9 aCOCrepond to the frequeny or/29-l.25lk.
The loci labelled 3a and 3b terminate on the real a-axis and reqpaesent fee -
ws V , nogatin'g upstreami from the emxitation. The lad4 labelled 30 and 2d

'I also both terminate on the real a-axis and represent free-waves whose phase
Ipropats downstream from the exitation, but whose- energy propagetes
tWete from infinity and dowatreas from the excitation, respecatively.

The loci labelled 4 orrespond to the frequency ar/awml. 533 * he lom ~ *
labelled 4a terminates on the real w-axis and therefore rpents a free-
wave pronpa-gatin upetrem fu te exitation. Th~e I ocm laaee 4b~
termnates in the lower half-plane, and represents a wave whos amlitude
decays eq onentially with distance from the excitation point. The locus
labelled 40 teriminates on the real a-ais and represents a free-wave
prpagtn downtrern from the exitation, whilst the locuis labelled 4d
terminates in the upper half-planseand represents a wave whom amlitude
decays exponntially with distance from the excitation point. The weves
respreene by the loci 4b and 4d have positive phase speeds, but sawo group
velocities. The loci labelled 5 Correspond to the frequey wr/2w-l.7533, . :'

and are similar to those at 1.*583.

"aonly coalescing poles which originate in opposite hafpla1e5
coalesce at a real frequenc~y between 1.*2533 and 1 *533. *it is shown in the

Apenixthat coalescence at a real frequency orepnsto a transient
re aos, and the rubber pipe therefore has no absolute in li1 ty. tpp

repos Is pedmnantly at the excitation frequency, and the nature of the
rsons depends on the value of the excitation frequency. if the excitation

frequncy is less than fL the pipe is conveativly unstable. If the

9,, excitation frequiency is between fL and fg the reponse consists only of W



free-viaves, and If the excitation frequency iA greater than tU the response
is again stable and consists only of free-waves, an evanescent wave
proapagating downstream from the excitation and a weve & no-e phase propagates* -

downstream from Infinity, but whose amplitude decaysl wuoentally with
distance from the exwltation. Soe values of ft and fU -vy be obtained
either by further numrical waec, or directly from, equations (3.*16) anm
(3.18). 1br the rubber pipe they are found to be -

0A

1 - 1 2f (4.3) 4*.

u- 1. 2Gm

pipe duming Included In the calumlations. 'Ito numrical value of 11, the
hYstereti l0oss fawtOX, aschosen to be 0.2, and the results are shown in
Figures 10 am 11. the positions of the rooatc for the steel pipe, -1,w
in Figure 10, are only slio*tLl altered by the addition of damping. in

* perticular, the l20" epndn to fre-z e propaga0ting upstream with
*negative pbm s"ee In the undamed came, umve downards, i *e. aay from the

Macis amd thjerefoce rep 0resen evanescent waves propagating upstream. the 1081
corrspomingto free-weves propagating upstream from the exicitation with

positive Phase speed In the undMed case, woos upwards, i.e. they cs the
*real a-s, and therefore represent unstable waves whose ampitudes increase

with distance from the emltatitn. However, it Is clear from Figure 10 that a
locus from the upper half-plane noet coalesce with a 2ocus from the lower
half-plane at a complex frequency whiose real pert Is lbetween 0.1 20a and 0.160%
and that the pipe is therefore absolutely unstable. WIilst the addition of

d1gto the Ipe*ma stabilize or de-stabilise individual free -a which
propagate at the excitation frequency, it does not z the absolute
instability, which doinates the solution atlx ie

to positions of the roan loci for the rubber pipe, shown in Figure 11, .

are again only slightly altered by the addition of daming. The individual- -4

free-waese propagating at the excitation frequency mmy be stabilised or
destabilised In the sam way as for the steel pipe. Kowaee, at a frequency
Of aprrieey1.*25Hm a root locus from the upper half-plane coalesces with
one from the lower half-plane at a complexc value of w~Indicating an
absolute instabIlIty. Wiglst the addition of =aMin the pipe mny
stabilise or destabilise the individual freewae at texcitation frequency
its net effect Is to dsestabilise the pipe by itoungan absolute
instability which dominates the solution at large times Irrespective of the -* ~
awitation frequency. Thus the convective instability at low excitation- 4.

freueniesis converted to the more serious absolute instability which occurs
not only for all excitation frequencies but also for impulse exitations.

The stability characteristics of an undamped pipe, obtained from the beam
* thorymodel, are sumarized in Figure 12.* If W/Nbl the pipe response is

absolutely unstable for both the impulse ewitation and the tn-amnc. C~.*
switch-on * If Go/NKI the response to the impulse excitation is stable, beingL%
bounded in both space and time. The response to the tine-harmonic switch-on
may be conrvactively unstable or stable, consisting only of free-waves or of a

oointionof free-waves and evanescent waves, depending on the parameters of
the pipe, the fluid and the excitation frequency.
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'lto stability charateritics of apipe conveying InvisciA fluid havew.-
I eamined using a causal approach which Is able to distinguish between

an absolute Instability, in which the aslitude of the response grows with
tim everywhere, and a convective instabilty, in which the amlitude of the
response grow as the disturbance propagates amy from the excitation. Two 7

types of initial dsrbnewere considered; type A, which is an ispulse
applied at t-0, and type B, which Is a time-harmonicditbacsn t)
which is switched on at t-0. if an absolute instability is present the
oscillatory part of the response is dominated by the 'pinch' frequency, C 0

whilst 1f a convective instability only is present the Oscillatory part or,
* the response is predominantly at the excitation frequency, 00.

The main findings of the mathematical and numenrical work on the beamCV

S(1.) if 8M/K. 1I, the undamped bam, has an absolute instabilty for both
type A and type B disturbances. One MOds Of the ZOsponse grows
expog nentially with tim everywihere, and eventually dominates the
variety of other wave nations which my als be present.

(ii) if OSfIKl. tra undamped beam response to type A ditracsIS
transient everywhere. For type 8 disturbances the form of the
response depends on the excitation frequency as follows:

*(a) at excitation frequencies, wo, less than a small value, *L,
the beam is convectively unstable. Its response consists of
two free-waves, th~e direction of whose group velocities are
upstresam from the exitation, together with an evranescen

* ~wave and a convectively unstable wave Ahos group velocities
are downstream from the excitation.

(b) At excitation frqecis n, in a range wt, to ing, the
*beam is stable.* Its response consists of four free-waves, two

of whose group velocities are upstream from the excitation and
the other two of which are downstream from the excitation.*

(c) At excitation frqecis n, greater than mng, the beam is
also stable, its response consisting of an evanescent wave and
a free-wave whose group velocity is upstream frocm the
excitation, and an evanescent wave and a free-wave whose
group velocity in downstream from the excitation.

(iit) Soe addition of daming cannot rnnoye an absolute instability, and ~
it introduces one for both type A and type 13 excitations if one is .

not already present, the eontilgrowth factor in this casem -f~
* being proportional to the loss-factor, 71. Becausea the loss-factor

Is usually small, it is expected that the medius term behaviour of -

the beam will be as described in (i) or (ii) above, but the long
term behaviour must be absolutely unstable.
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som nuoia V~L notU presnte [aeha sn on the

(1) For the uOno hrmonic, the gamlles wgimltric mode, two notable
features vg iz. I

(a) Xrnstabilities more not present for the keati and Material
constants of the pipes oosIMered In Section 4.Po,

(b) ecause the n=O shell Sode must lixit to the line-emoIted
plateproblem [14] as the shell radius tends to infinity,

N sae aditiovmal numerical and amlytical work was don which~ ~
suggested that onxvective Instabilities occur only if

E/ 3 (K1 '- :L)/2p C (.

Ibis Identity Is unl11ely to he satisfied for most practical
pipework system which convey water.

(11) FOT the amY. harmonic, the shell'*s 'bean', mode, the results were
identical to tWon of the beam theory moel, as described
above, at the low frequencies at whilch instabilities occur.

(111) FOrC the ii-2 harmnic, the first of the 5he115S 'loba' modes, tw
points are worth of note, via *a

(a) Again Instabilities ware not present for the geometric and
atril constants of the pipes considered In Section 4.

(b) Further numerical work suggested, tentatively, that convective
instabilities (and hence also the possibility of absolute
instabilities) my he found if the pipe radius in increased
sufficiently. No formualae were obtained for thin, but It In
thought that the identity would he less strict than equation

An Interesting side-effect of the fluid flow in the generation of modes
whiose phase and group velocities are in opposite directions. However, one
mast be vezy careful in Interpreting the group velocity as the velocity of
energ f~w when instabilities are present because soe mdes adit of an
Infinite group velocity, whidh in clearly not a physical possibility.

S..' hilst the theory presented here may be applied to the determination of
appoinmA stability boundaries, Its practical usefulness my be limited by

several factors. First, the approximtions which are implicit in the govern-
ing equation of motion do not adequately describe all possible flow confiqur-
ations, sae of which may result in other 9for i of instability. For eutamle,
thin, possibly turbulent boundary layers which mey exist next to the pipe sux-
face are not Included in thin theory. Ihe model in, howver, believed to cont-
tain the essential features of low-frequency transverse vibration. Secondly,

s1 the linear theory used here should predict the occurrence of instabilities,
bu, -n*a istabilit Oxst its amlitude and hence its practical Imort-



anice will be determined by non-linear ef fects. Thirdly, the results presented
here are for infinite pipes, and the finite length of practica piping systems

mynot admit the long wave length instabilit is predicted. Finally, the do-fl stabilising effect of damping may render meaningless the analysis of the un-
damedcaebcuesmdapnisawyprsninpatc.Tebswy
to test the range of applicability of the theory is to conduct experimental
tests.

Z. A. Skelton (530)

* Mnuscript comleted January 1964.
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A Casa RpxOM~b to the Stabiiity Analysis Ot Uzszr System

In tme stemy-state appUomm to stablityr It Is massin that an
ezoitation of the 15 om hC~oew( -iwt ) exists t all tUse t. raI
pzaotIce tieverW, the excitation will a bas ben wtobe on at mm time,
t-0, NOT. Mawe possiblities for thm amitds of them m syta -aos tim.
z~iue: (1) It UNI NOtti down evZYWs*e to finite Valuens vtJmi aze bounded

In both spec nd~ tim and which may at say ntbe eqaa to theb ft~-,tate
valumsg (ii) it msy ueftt 4mm, evexI'there to stowy Values wicdh mfamas.

%*gom-tiall with distance Era the point of smaitatics; or (i1.1) it my
Wow eiOm-ial&3 with tIJMs at eVexy point of tim 07stes. 3cm (111 andG
others have te a case (1i) a cotvective itiit, ad cume (111) an
absolute Instablity. The stability analysis proceds as follUms.

It is oouVenint to TOPCOsent tSIm -ytm resPWAum O , tR), and the
exbcitation P,(sat) as tm. real parts of oaspix funations V( at) and
V(ut). respectivly, vi..

(AI)

Thoe m cwtios are themn repirmkted 48 the TAP'&C- iUwIM transfors pair

1 4.i 13(il-it)tt(2

ik JW)-(/2W) i j 0, a ~ IMSt)Ge (MZ)

1oo fo 1-0

1l~m..)-35-
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sati fibyti spoinste evalato Oy be wrtespns as ~ ) i

evlutono the Pm we )(rt a) In . ofF eqato (Ara) whi)

whr Ca stmdispersion reltion of i enrl ai sste. fubstitoni

eution dMintoeuion aZ)o inves the ytresponse asWC)2C-

wim fire stdep sinl tivalub po~terdation codfio tthrsoaet(u~

rires inform2aion aboultd beaviouri o bthe D a a.) ad P .Th e
sigeleldispersion relation oCa . s n tenereal at-ald fuctin whic

arlt"y beotin-ued on the roel a-xisw byheresin arenynsr

tat the donisperion reato in1*vles timwhre radical uts ut be~)2 c-
wichroduce made sfilentvalde byisn the radpito woitibeof tht
realC a-azs The2 ~ assouatd bac ums non-negaive o the real at-axis m
(snglealuthreed dispers ionit e in the realpe-tis ayf-thae. be h

exception of this retriction, the choice of branch cuts is arbitrary. The
behaviour Of F( a,wa) depends only on the type of forcing excitation applied
to the systest. TIwo cntypes of escitation are an impulsive excitation

F(X,t)-F0 8(z)6(t) (W')a

whose transform is given by equation C(M) as

and a alehzoi excitation switched on at t-0, viz.,

~~Th oveto uresneL theqatiou]tnd to) alu or mnlust~ infinitay,

CUMUM ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ,I, th atu i ~yn adyster.Fgr lutae



respectively, the term exp(iaz) in the integrand remains finite.

In Figure 2, let a+ (j=l,N a ) represent all the poles of the integrand
in the upper half-plane, and a3 (j=l,Nu) represent all the poles in the 0
lower half-plane. If a is sufficiently large then all these poles are well
separated from the real a-axis. The contours C1  and C2 are circular
arcs of large radius and, provided that all these singularities of the
integrand in the upper half-plane lie inside the contours, the contributions
to the integral from integrating along C1  and C2 tend to zero as the
radius tends to infinity. The integrals along B1 , B2 , and 83 are branch 0
cut integrals and will be discussed later. Similar results are true for the
contour for z40 in the lower half-plane. The integral may be generally
expressed, as the sum of residues and branch cut integrals, in the form

*i ia,~xpi~)D(a.,w) + W (z,wa) (All)
) a"

j=1

where the + sign corresponds to positive values of z aid the - sign to
negative values of z. a(z,w) is the contribution from the integral around
the branch cuts in the complex a-plane, and .6

The system response W(z,t) is then found by evaluating the Laplace-
integral of equation (AS), using the result of the Fourler-integration given .-G

by equation (All). For t O, the contour must be closed as shown in Figure 3a
in order to satisfy the causality requirement. For t0O, the contour may be
closed by using the standard Laplace contour also shown in Pigure 3a. Any
numerical scheme for evaluating this Laplace integral would become numerically
unstable for large positive values of t because of the term, exp( at), in the
integrand which tends to infinity as t tends to infinity for positive values
of a. it is therefore necessary to deform the contour down to the real
w-axis by letting a tend to zero, not only to allow a numerical evaluation
of the integral, but also in order to identify the contributions to the
integral from branch cuts and poles in the complex 4w-plane. The resulting
contour, shown in Figure 3b, lies just below the real #-axis, but is indented
around any poles and branch points in the upper half-plane or on the real
w-axis. If wn (n=O,Nf) represent all the poles of the integrand, then the
system response, for t >O, may be expressed using Cauchy's theorem, as the sum
of residues and branch cut integrals, in the form

N A

W(z,t) - (-iB (Z,n)' D~j,,l )exp<iaz))exp(-iw t) + B (zt) (A12)~an ~ n jn W
n-0OA

A
where R~jW and 8 (Z,fl are the residue contributions. defined as

na n

p ~R(aJO Wii ) al(Ia-ii F) (A13) ~
jn n %

* .-37-0



A
3 (uea )lia(M-M 3 (mM))(114)a n n a

and 36(m. t) is the contribution from the Integral around the branch cuts -,

in the CompeX "-lame.

in order to deform the contour in the "l-pane as described above, the
continuation of Vz,w) Into the region ft(MjCa mtust be analytic. As
the Laplace contour is swed. down to the real i*-axis, the poles enclosed. by -

the Fourier contours also maye in the "-lane and it may be necessary to
defozis the Fourier contours so that they always include the sam poles of ~
the response tranoformi, NC a,c).

In order to ascertain whether or not any physical significance can be ~
attached to each termn of equation (A12) for the response of the system, It
is necessary to use the root locus technique as described by Melcher (11.]
and Atkins E14]. Firstly, consider the contribution from. a simple pole on
the real, w-azis at w-asn, which arises from a tlm-hazoonic exc:itation of
the form Poexp( -iut). In the root locus technique the loci of roots a
(which are functions of ai) ame plotted for values of w-u 1 +icu for particular
values of a. as a varies from 4a to 0. Provided that these loci do not
coalesce (i.e*. Intersect at the sae value of or and a) for any real or
then there are twelve basic possibilities for each locus which are illustrated *

in Figure 4a. The shaded circles In this Figure denot points where the loci
terminate, g 2.to 0-0.

The form. of the system response my be determined from the 1oc1 for which
Mr-UConJ. In cases (1) to (6), because each of the loci coes from abo the
real a-iniis the Fourier contour miust be Indented where necessary to incld
the pole in the upper conttour. The response due to each of these poles is

* non-SeOV only for s3-O, in which case it is given by

wihere a +i0 is the location of the Pao when O-Im(M 1-0.

In cases (2.-H3), whtere ar)O, the phase ditrac rpgtsIn the .
positive 2-direction. If aj3-0, as In Case (1), the wave decays emponentially
with distance and it Is called an evanescent w-ave. if *i.-O, as In case (2).
the wave propagates without decay. in case (3), where ai-0. the wave
increases exponentially with s and is termed * convectively unstable'. *in
cases (4 )-(6), where arcO. the phase ditrac propagates in the negative
s-direction (i.e.* towards the exaitation ). In case (4), Where ol 0-, as the
phase propagates the wave amlitude increases exponntially with distance.
In case (5) ai- 0 Wa the wave propagates without decay. if aicO, as in
case (6), the wave decays exponetially with distance.

Cases (7)-(12) are s"mlar to oases (l)-(G), except that the loci come
from below the real a-axis and the Fourier contours must be indented where
necessary to ensure that, in each case, these poles are included In the lower
Conftur. The contribution to the response from each of these poles isn*

* therefore non-sero only for 340 .
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:,:-Z The contributions to the displacement from simle poles in the complex -!:.:

w-plane represent propagating, spatially amplifying or spatially decaying
*waves at the excitation frequency, on. This description of the propagation

directions gives only the phase speeds of the individual waves. A more S
realistic quantity physically is the group velocity, Ow/ea, the velocity at
which energy propagates. This may be obtained from the direction of the
loci at o0-, viz.-

Owl a-8 is /O(ar~ii > ~ +i( O~r 95)] eqas)(A16)

where s is the arc length along the locus, measured from o-0.
, In particular, the group velocity is positive if the initial direction of

the locus in the cmplex a-plane is upward, and the group velocity is
*: negative if the Initial direction of the locus is downward.

In order to consider the contribution, Dw(z,t), to the response from LA..
* the Integrals around the branch cuts In the complex w-plane possible

singularitles In the complex w-plane must be Identified. Equation (All)
indicates that singularities in the w-plane may be expected if, for som e

D (a (),)-O (A17)

If a solution to the simultaneous equations (A17) and (AlS) exists, with
Iu~wJ3 0, it indicates that equation (ALS) has a repeated roota at that

Svalue of (, which in the context of the root-locus method means that two

. root loci coalesce In the complex a-plane. There are two distinct
-. possibilities here as illustrated in Figure 4b. If both loci have come from
. * either above or below the real a-axis, as in case (1), then the Fourier

contour in the complex a-plane may always be deformed to include both poles,
and at the coalescence frequency the residue may be calculated as for a second
order pole at a-a 1 (w): this constitutes a removable singularity in the

complex -plane. Thus, as pointed out by Melcher (11], the coalescence of
poles illustrated in case (1) does not indicate a true singularity in the
complex w-plane. In case (2), however, a locus originating above the real
a-axis coalesces with one originating from below. The Fourier contours in the
complex a-plane can no longer be distorted to include only the poles

• originating in the upper (or lower) balf-plane, and they become 'pinched' at
the (complex) frequency, wp, at which coalescence occurs. This confirm the
presence of a singularity in the complex w-plane at wmip, which my be
identified as a branch point by considering the Taylor series expansion of the .-..

dispersion relation about wiwp, a-up, viz.,

2 2 2 2D(a,w)-(w-w )8D/S.1(l/2)(a-a ) 8 D/a +(aP )(W-W )8 D/ -.w

+(/2)(-W 2 a2D/Sw2 . ..... (A )

where all the derivatives are to be evaluated at amap sW.A. By coxwidering
the order of each of the term in equation (A19) as w-wp, Melcher (11] has .% .'.-
shown that in a neighbourhood of (ap,wp) ..
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(a-. )-,[2(u-( )(HD/&)/( 2D/D 2 ) 1/2 (A20)
p p

o residue contribution to W(zw) in the neiouhood of (ap, Uip), is glv.M
by equation (All) as

*:I.F(a,E)ep(ian),/ (a,w) (A21)

Diffebrentiation of the Taylor expansion, equation (A19), with respect to a
allows the residue contribution, equation (A21), to be written to first
order in (C-p) as

*IF(a, W)exp( i")/((a-0 ),20/&x2) (A22)

which may be expressed in terms of w, using equation (A20), as

,JP( a.Ed)ezp( it)/2(d-E )( 2D/Sa )(D/oa)] 1/2 (A23) . .

S dmonst.ating that E is, in fact, a branch point of W(z, ).

In the context of the root-locus method, the presence of the branch
cut a" be demonstrated by considering the possible behaviour of neighbouring
root-loc. in the c,:lex a-plane for w.. and w.., where w.,_ . (p] and

i41PA as illustrated In Figure 5a and Sb * In both cases, it may be
hown tthe residue contributions to the Fourier Integral W(z,w) are

discontinuous at H(u]-RE(up], indicating that the branch cut in the cop lex
.- plane runs from to to as. This choice of branch cut is Imposed by
the causality r'equirement V= detezmis the poles to be included in each
Fourier contour. e .r

The alProximste value of the contribution to the response from the
Integration around the branch cut in the comple Ed-plane mLy be calculated
by wAkin the assumtion that P(a,w) may be apProximated by F(alp1 ,p). ,. ,p.

V. This approxiaon is exact for an impulsive excitation, and the branch cut ., .
athen becomes

Od

l~~~a*.o.~ (,t W) )* ttw a Z)te gMyi {v si
p

i.i

hI(a ,E )x(a 'W) la ex-it)
* 3s~tu p p dw (14

2(w2(@ D/ea )/E) 1 1 2
((j.4j)1
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UNLIMITED

the contrit]ion to th repse from th branch cu inega gr..ow:?:
*zg entally with time a lt ocations, ,,. Tis in tersed an absolute

instablity, and o whatever the value of the exctation frequency, On ,
and in fact it also ocurs for an impulsive excitation. Oien a system is

Sabsolutely unstable, the system response is always by the 'pinch,
frequency and waveniuber, ca and ap respectively, after a sufficiently

long time interval. If 6pis real then the factor t-1 / 2 in eUo

It is now necessary to discuss the branch cut Integrals in the complex A

a-plane. In general, provided that the branch cuts are well away from any
* singularities of the integrand, the Integral around the circular contour 3

is zero, and the integrals along the contours B, and S3 contribute only
to the near fields because the integrands are bounded. Crighton E3] has
pointed out that only those poles which exist for all suitable choices of the
branch cuts may have any physical significance at large values of z. The

* remaining poles contribute only to the near field and their contributions
mu t always be combined with those from the branch cut integrals. The precise"_
form of the branch cut integrals depends on the choice of branch cuts and on
the form of the dispersion relation. ,'" "

As already mntioned, if a is sufficiently large all the poles of the
integrand of equation (S) are well separated from the real a-as lL. A -
con-quence of this is that the location of the poles depends on a particular
choice of branch cuts, and that no pole exists for all possible choices of %I .

branch cuts.* It also means that, as a ware, a root locus corresponding ~
to the movemnt of a particular pole my cross a branch cut and *disappear,
or vice-verea. At o-0, the poles corresponding to evanescent waves also
depend on the choice of branch cuts. The contribution to the response from
these poles can therefore have no physical significance in isolation, but R~~;'
must be combined with the branch cut integrals. a free-wave pole (i.e. one
which lies on the real a-axis for a-0) always exists for all possible
choices of branch cut and therefore has physical significance. A pole
corresponding to a convective instability crosses the real a-axis at m
positive value of a and therefore a3ways exists in a neighorho of the
axis. Furthermore, according to Atkins (14], if coalescing poles in the [.
a-1lane corresponding to a singularity in the uper-half lane exist, they - .

do so for all possible coices of branch cut. .7 "

In the absence of branch cuts in the comple a-plane, however, the
location of all the complex poles in the a-plane may be uniquely determined,

and their contributions to the response may be identified as propagating,
evanescent or convectively amplifying waves.

To suimmise, the root locus technique may be used to determine the
stability characteristics of a linear system. Firstly, it is necessary
to plot the root loci for a range of frequencies in order to determine
whether or not there is a branch point in the complex i-plane as a result .,".
of coalescing poles whose loci in the a-plane cam from opposite balf-planes.
if such a branch point exists the system is absolutely unstable and the
espnse, which t preomantly at the branch point frequency

epoentally with time at all locations. if no such branch point exists,
the response of the system my be determined by the zoot loci in the a-plane ..*;.
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UNLIMITED
%*ioh correspond to the e~iftatslOftfn -11HCS.- WW fteXPONO

be Wntifed a oq-4eayln traveling waves or a.ie olyapiyn
m o a de nt ca e h r h r r no bran ch poi nts U the " a eam--Iwveo wy also be identified. In practice Instabilities ae

uually dm~d by sow non-linear mahamim or other factors not taken into

accotn t currn theory.

o n, but not sufficient, condition for instability (absolute
or conw-t:ive) Is tha a lou In th ..plans crosses t rea a-azlis.

This Implies that for soms real wvenader a, the dispersion relation =mst
have a root m with a positive imaginary pert. This to the criterion which
is usually use" to determine instability using the steady-state approach.%
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